Grassmann Stein Variational Gradient Descent

Xing Liu ¹, Harrison Zhu ¹, Jean-François Ton ², George Wynne ¹, Andrew Duncan ¹

¹Imperial College London ²University of Oxford

 $(X, \cdot),$ (1)

Imperial College London

Introduction

Let P be a distribution over $\mathcal{X} \subset \mathbb{R}^d$ that admits a smooth density $p.$ Assume p can be evaluated up to a proportionality. We want to approximate P by particles $\{x_i\}_i^n$ *i* . **Application:** Bayesian inference

-
- **Methods:** Markov chain Monte Carlo, Variational inference, Stein Variational Gradient Descent.

- 1. Stein Variational Gradient Descent (SVGD) is a promising Bayesian inference method, but suffers from under-estimation of variance in high dimensions.
- 2. Recent advances address this issue via 1-dimensional projections (slices), which might be sub-optimal in terms of uncertainty estimation.

Summary:

SVGD [\[1\]](#page-0-0) starts with i.i.d. particles $X := (x_1, \ldots, x_n)$ drawn from an initial distribution Q, and iteratively updates *X* by minimizing the KL divergence of its empirical distribution from *P*:

Figure 1. Estimating the dimension-averaged marginal variance of a multivariate Gaussian dimensions *d*.

Stein Variational Gradient Descent (SVGD)

$$
T_\phi(x) = x + \epsilon \phi^*(x), \qquad \phi^* = \arg\min_{\phi \in \mathcal{B}_k^d} \mathrm{KL}(T_{\phi, \#} Q \| P),
$$

where $\epsilon > 0$ is a small perturbation size, \mathcal{B}_k^d *k* $\coloneqq \{ \phi \in \mathcal{H}^d_k$ $\frac{d}{k}$: $\|\phi\|_{\mathcal{H}^d_k}$ ≤ 1 } is the unit ball of the *d*-times product of RKHS $\mathcal{H}_k\times\dots\times\mathcal{H}_k$ of RKHS \mathcal{H}_k with a kernel $k:\R^d\times\R^d\to\R$, and $T_{\phi,\#}Q$ is the pushforward of Q with respect to T_{ϕ} . The optimal ϕ^* can be derived (and estimated) explicitly

S-SVGD [\[2\]](#page-0-2) is an extension of SVGD that tackles the curse of dimensionality by using slices (1dim projections). In S-SVGD, the update rule is $\phi^* = (\phi_1^*)$ $_{1}^{*}, \phi_{2}^{*}$ ${}_{2}^{*},\ldots, \phi_{d}^{*}$ *d*) T , where

 ϕ_i^* $j^*(\cdot) = \mathbb{E}_Q[r]$ r $\int\limits_j^{\cdot}$ T *j x, g* |
T $\binom{1}{j}$ + *r* r

where $O=(r_1,r_2,\ldots,r_d)$ is a fixed orthonormal basis of \mathbb{R}^d , and $g_j\in\mathbb{S}^{d-1}$ are optimised by maximising a sliced discrepancy, called max sliced KSD.

 $\frac{1}{j} g_j \nabla_{g_j^{\intercal}}$ $\int\limits_j^{\tau} x^{k} r_j g_j(g)$ T *j x, g* |
T *j* ·)]*,*

$$
\mathsf{cy},\, \mathrm{GKSD}(Q,P),\, \mathsf{between}\,\, \mathsf{two}
$$

- **Tackling curse of dimensionality:** S-SVGD sidesteps the under-estimation-of-variance issue of SVGD, as the particles are effectively transported along 1-dim subspaces at each step.
- Fixed 1-dim slices: However, the basis O is not optimised and both r_j and g_j are constrained to 1-dim, which may result in slower convergence and sub-optimal covariance estimation.

$$
\phi^*(\cdot) = \mathbb{E}_Q[\mathcal{A}_p k(x, \cdot)] \approx \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) s_p(x_i) + \nabla_{x_i} k(x_i, \cdot) := \hat{\phi}^*(\cdot)
$$

where $A_p\phi(x) \coloneqq s_p(x)\cdot \phi(x) + \nabla \cdot \phi(x)$ is the (Langevin) Stein operator and $s_p(x) \coloneqq \nabla \log p(x)$ is the score function of p. The maximum rate of decay of the KL divergence given by ϕ^* coincides with the kernelized Stein discrepancy (KSD)

Definition. The Grassmann kernelized Stein discrepancy distributions *Q* and *P* is

 $GKSD(Q, P) = \sup_{[A] \in \text{Gr}(d,m)} \text{KSD}_A(Q, P)$, where $\text{KSD}_A(Q, P) = \sup_{\phi \in \mathcal{B}_{k_A}} \mathbb{E}_Q[\mathcal{A}_p \phi(x)] = \sup_{\phi \in \mathcal{B}_k^m} \mathbb{E}_Q[(A^{\mathsf{T}})]$

where \mathcal{B}_{k_A} is a RKHS with kernel k_A , $\mathrm{Gr}(d,m):=\{\mathrm{Image}(A)\subset \mathbb{R}^d:AA^\intercal=I_m\}$ is the set of m -dimensional subspaces of \mathbb{R}^d identified by projector $A.$ $\mathrm{Gr}(d,m)$ is known as the Grassmann manifold (hence the name GSVGD).

$$
\text{KSD}(Q, P) = \sup_{\phi \in \mathcal{B}_k^d} \mathbb{E}_Q[\mathcal{A}_p \phi(x)] = \sup_{\phi \in \mathcal{B}_k^d} \left\{ -\frac{d}{d\epsilon} \text{KL}(T_{\phi, \#} Q \| P)|_{\epsilon=0} \right\}.
$$
 (2)

Algorithm (SVGD [\[1\]](#page-0-0)):

- 1. Start with $\{x_i^0\}$ $\{a_i\}_{i=1}^n$ drawn from some distribution Q .
- 2. For $t = 0, 1, \ldots$, do x_i^{t+1} $i^{t+1} = x_i^t + \epsilon \hat{\phi}^*(X^t, x_i^t)$, where $\hat{\phi}^*$ is given by Eq. [1.](#page-0-1)

Remarks:

- SVGD update rule: $\hat{\phi}^*$ leads to provable convergence to the target P under mild conditions, and each of the two terms in ϕ^* plays an intuitive role.
- **Curse of dimensionality:** suffers from under-estimation of variance for high dimensional problems. This attributes to the high dimensionality of both x and $s_p(x)$.

Sliced Stein Variational Gradient Descent (S-SVGD)

Remarks:

Grassmann Variational Gradient Step (GSVGD)

We propose GSVGD, which projects x and $s_p(x)$ onto subspaces of an arbitrary dimension, say *m* where $1 \leq m \leq d$.

(3)

$$
(A^{\mathsf{T}}s_p(x)) \cdot \phi(A^{\mathsf{T}}x) + \nabla \cdot \phi(A^{\mathsf{T}}x) , \quad (4)
$$

The sup in Eq. [3](#page-0-3) is taken over Gr(*d, m*) but not over all possible projectors *A* because we only care about where we project onto (subspace), but not how (projector *A*).

• The GSVGD update rule is

$$
[x, A^{\mathsf{T}} \cdot) + A \nabla_x k(A^{\mathsf{T}} x, A^{\mathsf{T}} \cdot)],\tag{5}
$$

φ ∗ $A^*(\cdot) = \mathbb{E}_Q[\mathcal{A}_p k_A(x, \cdot)] = \mathbb{E}_Q[AA^\mathsf{T}]$ $s_p(x)k(A^{\mathsf{T}}x, A)$ \cdot) + $A\nabla_x k(A)$ where the optimal *A* is sought using Riemannian gradient descent + SDE: √

$$
A \leftarrow \exp_{[A]}(\delta(I_m - AA^{\mathsf{T}})\nabla \alpha([A]) + \sqrt{2T\delta}\xi) ,\qquad (6)
$$

where $\alpha([A]) \coloneqq \text{KSD}_A(Q, P)$ is the objective, $\delta > 0$ is the step size, ξ is $d \times m$ whose entries are i.i.d. $\mathcal{N}(0,1)$ noise, $T>0$ is the noise level, and $\exp_{[A]}(B)$ ensures A remains a projector.

Figure 2. Two steps of particle descent (Eq. [5\)](#page-0-4).

Figure 3. One step of Riemannian Gradient Descent + SDE (Eq. [6\)](#page-0-5).

Algorithm (GSVGD; the proposed method)

- 1. Start with $\{x_i^0\}$ $\binom{0}{i}$ 2. For $t = 0, 1, \ldots$,
- i. Update each particle by $x_i^{t+1} = x_i^t + \epsilon \sum_{l=1}^M \hat{\phi}_{A_t,l}(x_i^t)$
- ii. Update each projector $A_{t,l}$ by Eq. [6.](#page-0-5)

Remarks:

- convergence.
-
-
- transporting particles along lower dimensional subspaces.

Experiments

Experiment 1: Conditioned Diffusion Process

Figure 4. Estimating the posterior mean and variance of the conditioned diffusion SDE dynamic.

projection dimensions *m* compared with its competing methods.

Experiment 2: Bayesian Logistic Regression with the covertype Dataset

the parameters of a Bayesian logistic regression model.

competing methods.

References

[1] Q. Liu and D. Wang, "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm," in *Advances in Neural Information Processing Systems* (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, 2016.

[2] W. Gong, Y. Li, and J. M. Hernández-Lobato, "Sliced Kernelized Stein Discrepancy," in *International Conference on Learning*

-
- *Representations*, 2021.

 $^{n}_{i=1}$ drawn from Q , and initialize M projectors $A_{t,1},\ldots,A_{t,M}.$

 \hat{p}_{i}^{t}), where $\hat{\phi}_{A_{t},l}$ is an estimate of Eq. [5.](#page-0-4)

■ Batched algorithm: $M \geq 1$ projectors A_1, \ldots, A_M are used simultaneously to improve

■ Validity: GKSD distinguishes distributions, meaning that $GKSD(Q, P) = 0 \iff Q = P$. **Convergence:** can be established by viewing the update as a discretised ODE-SDE system. **Tackling curse of dimensionality:** solving the under-estimation-of-variance issue by