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Introduction

Let P be a distribution over X ¢ R¢ that admits a smooth density p. Assume p can be evaluated
up to a proportionality. WWe want to approximate P by particles {x;}.
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Figure 1. Estimating the dimension-averaged

3. We propose Grassmann Stein Variational Gradient marginal variance of a multivariate Gaussian
Descent (GSVGD), which tackles this sub-optimality by density p(z) = N (x; 0, 1) with different
projecting onto arbitrary subspaces. dimensions d.

Stein Variational Gradient Descent (SVGD)

SVGD [1] starts with i.i.d. particles X = (z1,...,z,) drawn from an initial distribution @, and
iteratively updates X by minimizing the KL divergence of its empirical distribution from P:

T¢(£C) =T+ egb*(x), OF = arg minngBg KL(T¢’#QHP>,
where ¢ > 0 is a small perturbation size, B¢ = {¢ € ’Hg ||@llqa < 1} is the unit ball of the d-times
k

product of RKHS H;. x -+ x Mz of RKHS H;. with a kernel & : R% x RY — R, and Ty 4@ is the
pushforward of () with respect to Ty The optimal ¢* can be derived (and estimated) explicitly
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where Apo(x) = sp(z) - p(z) + V - ¢(x) is the (Langevin) Stein operator and sy(z) = Vlog p(x) is
the score function of p. The maximum rate of decay of the KL divergence given by ¢* coincides
with the kernelized Stein discrepancy (KSD)

KSD(Q, P) = SUPgbeBg EQ[AP¢<x)] = Supgbel%]‘j {—%KL(T¢7#QHP)‘€:()} : (2)

Algorithm (SVGD [1]):

1. Start with {a:g 1 drawn from some distribution Q.
2. Fort=0,1,..., do "' =zt + e¢*(X*, 2l), where ¢* is given by Eq. 1.

Remarks:

= SVGD update rule: gg* leads to provable convergence to the target P under mild conditions,
and each of the two terms in ¢* plays an intuitive role.

= Curse of dimensionality: suffers from under-estimation of variance for high dimensional
problems. This attributes to the high dimensionality of both x and sp(z).

https.//github.com/ImperialCollegelLondon/GSVGD/tree/main

Sliced Stein Variational Gradient Descent (S-SVGD)

S-SVGD [2] is an extension of SVGD that tackles the curse of dimensionality by using slices (1-
dim projections). In S-SVGD, the update rule is ¢* = (¢7, ¢3, ..., ¢3)T, where

63() = BQlrTsp(akryg,(9]2. 91 + 110, 1 kg 0T, g1 ),
where O = (rq,rg,...,rg) Is a fixed orthonormal basis of R? and gj € S%=1 are optimised by
maximising a sliced discrepancy, called max sliced KSD.

Remarks:

= Tackling curse of dimensionality: S-SVGD sidesteps the under-estimation-of-variance issue
of SVGD, as the particles are effectively transported along 1-dim subspaces at each step.

" Fixed 1-dim slices: However, the basis O is not optimised and both r; and g, are constrained
to 1-dim, which may result in slower convergence and sub-optimal covariance estimation.

Grassmann Variational Gradient Step (GSVGD)

We propose GSVGD, which projects x and sy(z) onto subspaces of an arbitrary dimension, say
m where 1 < m </d.

= Definition. The Grassmann kernelized Stein discrepancy, GKSD(Q, P), between two
distributions () and P is

GKSD(Q, P) — Sup[A]EGr(d,m) KSDA<Q, P) , where (3)
KSDA(Q, P) = supges;,  EqlApd(x)] = supgesy EQl(ATsp(x)) - o(ATz) + V- p(ATz)] - (4)

where B;.  is a RKHS with kernel k 4, Gr(d, m) := {Image(A) C R%: AAT = I,,,} is the set of

m-dimensional subspaces of R? identified by projector A. Gr(d, m) is known as the
Grassmann manifold (hence the name GSVGD).

The sup in Eqg. 3 is taken over Gr(d, m) but not over all possible projectors A because we only
care about where we project onto (subspace), but not how (projector A).

= The GSVGD update rule is

O () = Eg[Apkal(z, )] = EQ[AATsp(x)k(ATz, AT-) + AV k(ATz, AT-)], (5)
where the optimal A is sought using Riemannian gradient descent + SDE:
A+ exp[A](5(]m — AAT)Va(lA]) + V2T6E) , (6)

where «a(|A]) = KSD 4(Q, P) is the objective, § > 0 is the step size, £ is d x m whose entries are
.i.d. N(0,1) noise, T > 0 is the noise level, and eXp[A](B) ensures A remains a projector.
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Figure 3. One step of Riemannian Gradient Descent +

Figure 2. Two steps of particle descent (Eqg. 5). SDE (Eq. 6).

Algorithm (GSVGD; the proposed method)

1. Start with {:z;g i1 drawn from @Q, and initialize M projectors Ay q,..., As pr.
2. Fort=0,1,..
. Update each particle by 21*! = zf + € 32" da,(z!), where ¢4, is an estimate of Eq. 5.
II. Update each projector Ay, by Eq. 6.

Remarks:

= Batched algorithm: M > 1 projectors Ay, ..., Ays are used simultaneously to improve
convergence.

= Validity: GKSD distinguishes distributions, meaning that GKSD(Q, P) =0 < @ = P.
= Convergence: can be established by viewing the update as a discretised ODE-SDE system.

= Tackling curse of dimensionality: solving the under-estimation-of-variance issue by
transporting particles along lower dimensional subspaces.

Experiments

Experiment 1: Conditioned Diffusion Process
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Figure 5. Estimation quality of GSVGD with various

Fioure 4. Estimating the posterior mean and variance of ~Projection dimensions m compared with its competing
the conditioned diffusion SDE dynamic. methods.

Experiment 2: Bayesian Logistic Regression with the covertype Dataset
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Figure 6. Estimating the posterior covariance matrix of ~ various projection dimensions m compared with its
the parameters of a Bayesian logistic regression model. ~ competing methods.
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