mperial College London

Introduction

Let P be a distribution over $\mathcal{X} \subset \mathbb{R}^d$ that admits a smooth density p. Assume p can be evaluated up to a proportionality. We want to approximate P by particles $\{x_i\}_i^n$.

- Application: Bayesian inference
- Methods: Markov chain Monte Carlo. Variational inference, Stein Variational Gradient Descent.

Summary:

Stein Variational Gradient Descent (SVGD) is a promising Bayesian inference method, but suffers from under-estimation of variance in high dimensions.

Figure 1. Estimating the dimension-averaged marginal variance of a multivariate Gaussian dimensions d

Stein Variational Gradient Descent (SVGD)

SVGD [1] starts with i.i.d. particles $X \coloneqq (x_1, \ldots, x_n)$ drawn from an initial distribution Q, and iteratively updates X by minimizing the KL divergence of its empirical distribution from P:

$$T_{\phi}(x) = x + \epsilon \phi^*(x), \qquad \phi^* = \arg\min_{\phi \in \mathcal{B}^d_{\tau}} \operatorname{KL}(T_{\phi, \#}Q \| P),$$

where $\epsilon > 0$ is a small perturbation size, $\mathcal{B}_k^d := \{\phi \in \mathcal{H}_k^d : \|\phi\|_{\mathcal{H}_k^d} \le 1\}$ is the unit ball of the d-times product of RKHS $\mathcal{H}_k \times \cdots \times \mathcal{H}_k$ of RKHS \mathcal{H}_k with a kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, and $T_{\phi, \#}Q$ is the pushforward of Q with respect to T_{ϕ} . The optimal ϕ^* can be derived (and estimated) explicitly

$$\phi^*(\cdot) = \mathbb{E}_Q[\mathcal{A}_p k(x, \cdot)] \approx \frac{1}{n} \sum_{i=1}^n k(x_i, \cdot) s_p(x_i) + \nabla_{x_i} k(x_i, \cdot) := \hat{\phi}^*(X, \cdot), \tag{1}$$

where $\mathcal{A}_p \phi(x) \coloneqq s_p(x) \cdot \phi(x) + \nabla \cdot \phi(x)$ is the **(Langevin) Stein operator** and $s_p(x) \coloneqq \nabla \log p(x)$ is the score function of p. The maximum rate of decay of the KL divergence given by ϕ^* coincides with the **kernelized Stein discrepancy** (KSD)

$$\mathrm{KSD}(Q,P) = \sup_{\phi \in \mathcal{B}_k^d} \mathbb{E}_Q[\mathcal{A}_p \phi(x)] = \sup_{\phi \in \mathcal{B}_k^d} \left\{ -\frac{d}{d\epsilon} \mathrm{KL}(T_{\phi,\#}Q \| P)|_{\epsilon=0} \right\}.$$
 (2)

Algorithm (SVGD [1]):

- . Start with $\{x_i^0\}_{i=1}^n$ drawn from some distribution Q.
- 2. For $t = 0, 1, ..., \text{ do } x_i^{t+1} = x_i^t + \epsilon \hat{\phi}^*(X^t, x_i^t)$, where $\hat{\phi}^*$ is given by Eq. 1.

Remarks:

- SVGD update rule: $\hat{\phi}^*$ leads to provable convergence to the target P under mild conditions, and each of the two terms in ϕ^* plays an intuitive role.
- Curse of dimensionality: suffers from under-estimation of variance for high dimensional problems. This attributes to the high dimensionality of both x and $s_p(x)$.

Grassmann Stein Variational Gradient Descent

Xing Liu¹, Harrison Zhu¹, Jean-François Ton², George Wynne¹, Andrew Duncan¹

¹Imperial College London ²University of Oxford

Sliced Stein Variational Gradient Descent (S-SVGD)

S-SVGD [2] is an extension of SVGD that tackles the curse of dimensionality by using slices (1dim projections). In S-SVGD, the update rule is $\phi^* = (\phi_1^*, \phi_2^*, \dots, \phi_d^*)^T$, where

 $\phi_j^*(\cdot) = \mathbb{E}_Q[r_j^\mathsf{T} s_p(x) k_{r_j g_j}(g_j^\mathsf{T} x, g_j^\mathsf{T} \cdot) + r_j^\mathsf{T} g_j \nabla_{g_j^\mathsf{T} x} k_{r_j g_j}(g_j^\mathsf{T} x, g_j^\mathsf{T} \cdot)],$

where $O = (r_1, r_2, \ldots, r_d)$ is a fixed orthonormal basis of \mathbb{R}^d , and $g_i \in \mathbb{S}^{d-1}$ are optimised by maximising a sliced discrepancy, called max sliced KSD.

Remarks:

- Tackling curse of dimensionality: S-SVGD sidesteps the under-estimation-of-variance issue of SVGD, as the particles are effectively transported along 1-dim subspaces at each step.
- Fixed 1-dim slices: However, the basis O is not optimised and both r_i and g_i are constrained to 1-dim, which may result in slower convergence and sub-optimal covariance estimation.

Grassmann Variational Gradient Step (GSVGD)

We propose **GSVGD**, which projects x and $s_p(x)$ onto subspaces of **an arbitrary dimension**, say m where $1 \leq m \leq d$.

• **Definition.** The **Grassmann kernelized Stein discrepancy**, GKSD(Q, P), between two distributions Q and P is

 $\operatorname{GKSD}(Q, P) = \sup_{[A] \in \operatorname{Gr}(d,m)} \operatorname{KSD}_A(Q, P)$, where $\mathrm{KSD}_A(Q, P) = \sup_{\phi \in \mathcal{B}_{k_A}} \mathbb{E}_Q[\mathcal{A}_p \phi(x)] = \sup_{\phi \in \mathcal{B}_k^m} \mathbb{E}_Q[(\mathcal{A}_p \phi(x))] = \sup_{\phi \in \mathcal{B}_k^m} \mathbb$

where \mathcal{B}_{k_A} is a RKHS with kernel k_A , $\operatorname{Gr}(d,m) := \{\operatorname{Image}(A) \subset \mathbb{R}^d : AA^{\intercal} = I_m\}$ is the set of *m*-dimensional subspaces of \mathbb{R}^d identified by projector A. Gr(d, m) is known as the **Grassmann manifold** (hence the name GSVGD).

The sup in Eq. 3 is taken over Gr(d, m) but not over all possible projectors A because we only care about where we project onto (subspace), but **not how** (projector A).

The GSVGD update rule is

 $\phi_A^*(\cdot) = \mathbb{E}_Q[\mathcal{A}_p k_A(x, \cdot)] = \mathbb{E}_Q[AA^\mathsf{T} s_p(x) k(A^\mathsf{T} s_p(x)$ where the optimal A is sought using **Riemannian gradient descent + SDE**:

$$A \leftarrow \exp_{[A]}(\delta(I_m - AA^{\mathsf{T}})\nabla\alpha([A]) + \sqrt{2T\delta}\xi) , \qquad (6)$$

where $\alpha([A]) \coloneqq \text{KSD}_A(Q, P)$ is the objective, $\delta > 0$ is the step size, ξ is $d \times m$ whose entries are i.i.d. $\mathcal{N}(0,1)$ noise, T > 0 is the noise level, and $\exp_{[A]}(B)$ ensures A remains a projector.

Figure 3. One step of Riemannian Gradient Descent -SDE (Eq. 6).

Figure 2. Two steps of particle descent (Eq. 5).

$$(A^{\mathsf{T}}s_p(x)) \cdot \phi(A^{\mathsf{T}}x) + \nabla \cdot \phi(A^{\mathsf{T}}x)], \quad (4)$$

$$\mathbf{T}_x, A^{\mathsf{T}} \cdot) + A \nabla_x k(A^{\mathsf{T}} x, A^{\mathsf{T}} \cdot)], \tag{5}$$

Algorithm (GSVGD; the proposed method)

- 2. For $t = 0, 1, \ldots$,
- ii. Update each projector $A_{t,l}$ by Eq. 6.

Remarks:

- convergence.

- transporting particles along lower dimensional subspaces.

the conditioned diffusion SDE dynamic

Experiment 2: Bayesian Logistic Regression with the covertype **Dataset**

the parameters of a Bayesian logistic regression model.

- Representations, 2021

L. Start with $\{x_i^0\}_{i=1}^n$ drawn from Q, and initialize M projectors $A_{t,1}, \ldots, A_{t,M}$.

i. Update each particle by $x_i^{t+1} = x_i^t + \epsilon \sum_{l=1}^M \hat{\phi}_{A_t,l}(x_i^t)$, where $\hat{\phi}_{A_t,l}$ is an estimate of Eq. 5.

• Batched algorithm: $M \ge 1$ projectors A_1, \ldots, A_M are used simultaneously to improve

• Validity: GKSD distinguishes distributions, meaning that $GKSD(Q, P) = 0 \iff Q = P$. • **Convergence:** can be established by viewing the update as a discretised ODE-SDE system. • Tackling curse of dimensionality: solving the under-estimation-of-variance issue by

Experiments

References

[1] Q. Liu and D. Wang, "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm," in Advances in Neural Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, 2016.

[2] W. Gong, Y. Li, and J. M. Hernández-Lobato, "Sliced Kernelized Stein Discrepancy," in International Conference on Learning