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Introduction

Let P be a distribution over X ⊂ Rd that admits a smooth density p. Assume p can be evaluated
up to a proportionality. We want to approximate P by particles {xi}ni .

Application: Bayesian inference

Methods: Markov chain Monte Carlo, Variational

inference, Stein Variational Gradient Descent.

Summary:

1. Stein Variational Gradient Descent (SVGD) is a

promising Bayesian inference method, but suffers from

under-estimation of variance in high dimensions.

2. Recent advances address this issue via 1-dimensional

projections (slices), which might be sub-optimal in

terms of uncertainty estimation.

3. We propose Grassmann Stein Variational Gradient

Descent (GSVGD), which tackles this sub-optimality by

projecting onto arbitrary subspaces.
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Figure 1. Estimating the dimension-averaged

marginal variance of a multivariate Gaussian

density p(x) = N (x; 0, Id) with different
dimensions d.

Stein Variational Gradient Descent (SVGD)

SVGD [1] starts with i.i.d. particles X := (x1, . . . , xn) drawn from an initial distribution Q, and
iteratively updates X by minimizing the KL divergence of its empirical distribution from P :

Tφ(x) = x + εφ∗(x), φ∗ = arg min
φ∈Bd

k
KL(Tφ,#Q‖P ),

where ε > 0 is a small perturbation size, Bd
k := {φ ∈ Hd

k : ‖φ‖Hd
k
≤ 1} is the unit ball of the d-times

product of RKHS Hk × · · · × Hk of RKHS Hk with a kernel k : Rd × Rd → R, and Tφ,#Q is the

pushforward of Q with respect to Tφ. The optimal φ
∗ can be derived (and estimated) explicitly

φ∗(·) = EQ[Apk(x, ·)] ≈ 1
n

n∑
i=1

k(xi, ·)sp(xi) +∇xik(xi, ·) := φ̂∗(X, ·), (1)

where Apφ(x) := sp(x) · φ(x) +∇ · φ(x) is the (Langevin) Stein operator and sp(x) := ∇ log p(x) is
the score function of p. The maximum rate of decay of the KL divergence given by φ∗ coincides
with the kernelized Stein discrepancy (KSD)

KSD(Q, P ) = sup
φ∈Bd

k
EQ[Apφ(x)] = sup

φ∈Bd
k

{
− d

dεKL(Tφ,#Q‖P )|ε=0
}

. (2)

Algorithm (SVGD [1]):

1. Start with {x0
i}

n
i=1 drawn from some distribution Q.

2. For t = 0, 1, . . ., do xt+1
i = xt

i + εφ̂∗(Xt, xt
i), where φ̂∗ is given by Eq. 1.

Remarks:

SVGD update rule: φ̂∗ leads to provable convergence to the target P under mild conditions,
and each of the two terms in φ∗ plays an intuitive role.

Curse of dimensionality: suffers from under-estimation of variance for high dimensional

problems. This attributes to the high dimensionality of both x and sp(x).

Sliced Stein Variational Gradient Descent (S-SVGD)

S-SVGD [2] is an extension of SVGD that tackles the curse of dimensionality by using slices (1-

dim projections). In S-SVGD, the update rule is φ∗ = (φ∗1, φ∗2, . . . , φ∗d)ᵀ, where

φ∗j(·) = EQ[rᵀj sp(x)krjgj(g
ᵀ
j x, g

ᵀ
j ·) + r

ᵀ
j gj∇g

ᵀ
j xkrjgj(g

ᵀ
j x, g

ᵀ
j ·)],

where O = (r1, r2, . . . , rd) is a fixed orthonormal basis of Rd, and gj ∈ Sd−1 are optimised by
maximising a sliced discrepancy, called max sliced KSD.

Remarks:

Tackling curse of dimensionality: S-SVGD sidesteps the under-estimation-of-variance issue

of SVGD, as the particles are effectively transported along 1-dim subspaces at each step.

Fixed 1-dim slices: However, the basis O is not optimised and both rj and gj are constrained

to 1-dim, which may result in slower convergence and sub-optimal covariance estimation.

Grassmann Variational Gradient Step (GSVGD)

We propose GSVGD, which projects x and sp(x) onto subspaces of an arbitrary dimension, say

m where 1 ≤ m ≤ d.

Definition. The Grassmann kernelized Stein discrepancy, GKSD(Q, P ), between two
distributions Q and P is

GKSD(Q, P ) = sup[A]∈Gr(d,m) KSDA(Q, P ) , where (3)

KSDA(Q, P ) = supφ∈BkA
EQ[Apφ(x)] = supφ∈Bm

k
EQ[(Aᵀsp(x)) · φ(Aᵀx) +∇ · φ(Aᵀx)] , (4)

where BkA
is a RKHS with kernel kA, Gr(d, m) := {Image(A) ⊂ Rd : AAᵀ = Im} is the set of

m-dimensional subspaces of Rd identified by projector A. Gr(d, m) is known as the
Grassmann manifold (hence the name GSVGD).

The sup in Eq. 3 is taken over Gr(d, m) but not over all possible projectors A because we only

care about where we project onto (subspace), but not how (projector A).

The GSVGD update rule is

φ∗A(·) = EQ[ApkA(x, ·)] = EQ[AAᵀsp(x)k(Aᵀx, Aᵀ·) + A∇xk(Aᵀx, Aᵀ·)], (5)

where the optimal A is sought using Riemannian gradient descent + SDE:

A← exp[A](δ(Im − AAᵀ)∇α([A]) +
√

2Tδξ) , (6)

where α([A]) := KSDA(Q, P ) is the objective, δ > 0 is the step size, ξ is d×m whose entries are

i.i.d. N (0, 1) noise, T > 0 is the noise level, and exp[A](B) ensures A remains a projector.
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Figure 2. Two steps of particle descent (Eq. 5).
Figure 3. One step of Riemannian Gradient Descent +

SDE (Eq. 6).

Algorithm (GSVGD; the proposed method)

1. Start with {x0
i}

n
i=1 drawn from Q, and initialize M projectors At,1, . . . , At,M .

2. For t = 0, 1, . . .,
i. Update each particle by xt+1

i = xt
i + ε

∑M
l=1 φ̂At,l(xt

i), where φ̂At,l is an estimate of Eq. 5.

ii. Update each projector At,l by Eq. 6.

Remarks:

Batched algorithm: M ≥ 1 projectors A1, . . . , AM are used simultaneously to improve

convergence.

Validity: GKSD distinguishes distributions, meaning that GKSD(Q, P ) = 0 ⇐⇒ Q = P .

Convergence: can be established by viewing the update as a discretised ODE-SDE system.

Tackling curse of dimensionality: solving the under-estimation-of-variance issue by

transporting particles along lower dimensional subspaces.

Experiments

Experiment 1: Conditioned Diffusion Process
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Figure 4. Estimating the posterior mean and variance of

the conditioned diffusion SDE dynamic.

0 20 40 60 80 100
Projection Dimensions

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
 D

ist
an

ce

SVGD
S-SVGD
GSVGD

Figure 5. Estimation quality of GSVGD with various

projection dimensions m compared with its competing

methods.

Experiment 2: Bayesian Logistic Regression with the covertype Dataset
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Figure 6. Estimating the posterior covariance matrix of

the parameters of a Bayesian logistic regression model.
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Figure 7. Covariance estimation error of GSVGD with

various projection dimensions m compared with its

competing methods.
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