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Motivation



Motivation — Quantifying Discrepancy

Let Q,P be probability measures on X ⊂ Rd.

• P admits a density p = p∗/Z, where Z is an unknown normalising

constant.

• Samples are observed from Q only.

Problem of interest: How to quantify the discrepancy between P and

another probability measure Q ?

P : target distribution

Q: MCMC samples

P : a generative model

Q: true images
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Motivation — Quantifying Discrepancy

Integral Probability Metrics (IPM)1

Given a family H ⊂ L1(P ) ∩ L1(Q) of real-valued functions, the IPM is:

dH(Q,P ) = sup
h∈H

|EX∼Q[h(X)]− EX∼P [h(X)]|.

• Total Variation distance: H = {h : X → R : supx∈X |h(x)| ≤ 1}

• L1-Wasserstein distance: dW :

HW = {h : X → R : |h(x)− h(y)| ≤ ∥x− y∥2, ∀x, y}

• Bounded Wasserstein distance/Dudley metric: dbW :

Hbw = {h ∈ HW : h is bounded}

Problem: dH(Q,P ) requires integrating over P , so it cannot be computed!

Solution: Choose H so that ∀h ∈ H, EX∼P [h(X)] = 0.

How to choose H for a generic P ? — Use Stein’s method!

1
[Müller, 1997]
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Kernelized Stein Discrepancy



Stein’s Method

Given a probability measure P on X , we are interested in finding a linear

operator T acting on some set G(T ) of functions on X such that

Stein’s Identity

For any probability measure Q on X ,

Q = P ⇐⇒ EX∼Q[(T g)(X)] = 0, for all g ∈ G(T ). (1)

Glossary:

• Stein operator: T

• Stein class: G(T ) for which

EX∼Q[(T g)(X)] = 0 for all g ∈ G(T )

• Stein set: Any G ⊂ G(T )

• Stein characterisation: The equivalence (1)
Charles Stein
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A Discrepancy based on Stein’s Method

Setup: P,Q two probability measures. P has unnormalised density p that

is continuously differentiable.

Recall: The IPM is dH(Q,P ) = suph∈H |EX∼Q[h(X)]− EX∼P [h(X)]|.

((((((
Kernelized Stein Discrepancy

Given a Stein operator T and a Stein set G, the Stein discrepancy is:

S(Q,P,G) = supg∈{T g: g∈G} ∥EX∼Q[(T g)(X)]∥2.

Ideally, we want

• Separation: S(Q,P,G) = 0 ⇐⇒ Q = P

• Computability: S(Q,P,G) can be efficiently computed even when the

normalising constant of p is unknown and sampling from P is infeasible.

How to choose T ? Langevin Stein operator

(T g)(x) = ⟨∇ log p(x), g(x)⟩+ ⟨∇, g(x)⟩.

How to choose G ? Reproducing Kernel Hilbert Spaces (RKHS)!
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Reproducing Kernel Hilbert Spaces (RKHS)

Reproducing kernel: k : X × X → R.

• Symmetric: k(x, y) = k(y, x).

• Positive definite: For any n ∈ Z+, x1, . . . , xn ∈ X and c1, . . . , cn ∈ R,∑n
i,j=1 cicjk(xi, xj) ≥ 0.

RKHS: A Hilbert space Hk is a RKHS associated with k if

• ∀x ∈ X , k(·, x) ∈ H.

• Reproducing property: ∀x ∈ X , ∀f ∈ H, ⟨f, k(·, x)⟩Hk = f(x).
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Kernelized Stein Discrepancy

(Langevin) Kernelized Stein Discrepancy (KSD)2

Choosing Gd
k :=×d

j=1 Gk for Gk := unit-ball in a RKHS Hk, the KSD is

D(Q,P ) := S2(Q,P,Gd
k) = EX,X′∼Q[kP (X,X ′)],

where

kP (x, x
′) := k(x, x′)⟨sp(x), sp(x′)⟩+ ⟨∇xk(x, x

′), sp(x
′)⟩

+ ⟨∇x′k(x, x′), sp(x)⟩+ ⟨∇x,∇x′k(x, x′)⟩,

and sp(x) := ∇x log p(x).

• kP : Stein reproducing kernel.

• D(Q,P ) ≥ 0 and D(Q,P ) = 0 ⇐⇒ Q = P .

• kP is computable even if p is only known up to a normalisation:

sp(x) = ∇x log p(x) = ∇x log(p
∗(x)/Z) = ∇x log p

∗(x)−���∇xZ.

• Estimation: given i.i.d. {Xi}ni=1 ∼ Q,

Dn :=
∑n

1≤i̸=j kP (Xi, Xj)

2
[Liu et al., 2016, Chwialkowski et al., 2016] 8
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Kernlized Stein Discrepancy

Figure credit: [Gorham and Mackey, 2017]
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Convergence Determination

Setup: P same as before, and {Qn}n≥1 is a sequence of empirical measure.

Questions:

1. Does Qn →d P imply D(Qn, P ) → D(P, P ) = 0?

2. Does D(Qn, P ) → 0 imply Qn →d P ?

Theorem [Gorham and Mackey, 2017]

1. If ∇ log p is Lipschitz and k is twice continuously differentiable, then

dW (Qn, P ) → 0 =⇒ D(Qn, P ) → 0.

2. Assume ∇ log p is distantly dissipative (a relaxation of log-concavity).

If either an IMQ kernel is used or (Qn)n≥1 is uniformly tight (a tail

condition). Then D(Qn, P ) → 0 =⇒ Qn →d P .

General conditions under which Qn →d P ⇐⇒ D(Qn, P ) → 0:

[Hodgkinson et al., 2020, Barp et al., 2022]
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Testing



Application 1: Goodness-of-Fit Testing

Goodness-of-Fit Testing

Given sample {Xi}ni=1 drawn independently from Q, test

H0 : Q = P vs. H1 : Q ̸= P .

⇐⇒ H0 : D(Q,P ) = 0 vs. H1 : D(Q,P ) ̸= 0 .

KSD test3: Compute test statistic Dn using {Xi}ni=1, and reject for large

values.

Given significance level α ∈ (0, 1), the rejection threshold q̂1−α should

satisfy

Type-I error := PP (D̂n ≥ q̂1−α) ≤ α .

To compute q̂1−α, we need to know the distribution of Dn under H0.

• Intractable, but can be approximated using bootstraping.

3
[Liu et al., 2016, Chwialkowski et al., 2016]
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KSD test3: Compute test statistic Dn using {Xi}ni=1, and reject for large

values.

Given significance level α ∈ (0, 1), the rejection threshold q̂1−α should

satisfy

Type-I error := PP (D̂n ≥ q̂1−α) ≤ α .

To compute q̂1−α, we need to know the distribution of Dn under H0.

• Intractable, but can be approximated using bootstraping.

3
[Liu et al., 2016, Chwialkowski et al., 2016]
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Goodness-of-Fit Testing

Algorithm (KSD Test)

Given {xi}ni=1 ∼ Q and a test level α > 0,

1. For b = 1, . . . , B, compute

K̂SD2
k,b :=

1
n2

∑
1≤i ̸=j≤n ϵbiϵ

b
jkP (xi, xj),

where ϵb1, . . . , ϵ
b
n are i.i.d. Rademacher r.v. in {−1, 1}.

2. Reject if D̂2 ≥ γ̂α := (1− α)-quantile of {K̂SD
2

k,b}Bb=1.
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Example — 1D Gaussian Mixture

Figure credit: [Liu et al., 2016]

• P =
∑5

k=1 wkN (µk, σ
2), where wk = 1

5
, σ2 = 1, and µk ∈ [0, 10].

• Q = same as P but with Gaussian noise injected into µk, σ
2 and logwk.
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Blindness of KSD

D(Q,P ) ≈ 0 when Q and P are multi-modal distributions with

well-separated modes. −→ KSD test power ≈ α.

Figure credit: [Wenliang and Kanagawa, 2020]

Figure credit: [Liu et al., 2022a]
14



Application 2: Sample Quality

Quantification



Application 2: Sample Quality Quantification

Setup: P same as before, and {Xi}ni=1 an i.i.d. sample from some Q.

• E.g., Q is a MCMC sampler targeting P , or a generative model.

Questions: How to quantify how well {Xi}ni=1 fits P ?

• Classical diagnostics such as Effective Sample Size and the

Gelman-Rubin statistic do not account for asymptotic bias.

• KSD is a natural metric due to its convergence-determining property!
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Example — Hyperparamter Selection

Using KSD to select hyperparameters of a MCMC sampler, with comparisons

against ESS (Effective Sample Size). Figure credit: [Gorham and Mackey, 2017]
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Application 3: Stein Variational Gradient Descent

Objective: Sampling from P with continuously differentiable density p.

Idea:

• Initialise X ∼ Q

• Iteratively apply a map T (X) = X + ϵg(X) so that T∞(X) ∼ P .

Choose g in some function class H to maximally decrease KL(T#Q∥P ):

supg∈H{− d
dϵ
KL(T#Q∥P )|ϵ=0} = supg∈H EX∼Q[(T g)(X)] (*)

[Liu and Wang, 2016]:

• (*) = S(Q,P,H), the Stein discrepancy objective!

• Hence, the optimal g∗ is the maximiser in (*).

• Choosing H to be a RKHS, g∗ has an analytical form:

g∗(·) = EX∼Q[T k(·, x)] = EX∼Q[∇ log p(X)k(X, ·)︸ ︷︷ ︸
attraction

+∇xk(X, ·)︸ ︷︷ ︸
repulsion

]

• Using g∗ in the map T −→ Stein variational gradient descent (SVGD).
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Application 3: Stein Variational Gradient Descent

Stein Variational Gradient Descent

• Given X1, . . . , Xn ∼ Q i.i.d., and ϵ > 0.

• For t = 1, 2, . . ., set

X
(t)
i = X

(t−1)
i +

ϵ

n

n∑
j=1

k(X
(t)
i , X

(t)
j )∇ log p(X

(t)
j ) +∇Xk(X

(t)
i , X

(t)
j ) .

Figure credit: [Liu and Wang, 2016]

• Deterministic interacting particle system.

• Both asymptotic [Liu, 2017] and non-asymptotic theories

[Liu and Wang, 2018] are available.
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Variance Collapse

Even in moderate dimensions, SVGD particles will collapse onto the modes

of P and exhibit no diversity.

• https://github.com/ImperialCollegeLondon/GSVGD/blob/main/

imgs/gsvgd_cover.gif

Solutions:

• Work on low-dim projected spaces:

[Gong et al., 2021a, Gong et al., 2021b, Liu et al., 2022b].
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Yet There are Many More...

• Post-processing of MCMC samples [Riabiz et al., 2020].

• Stein points [Chen et al., 2018, Chen et al., 2019].

• Model training [Barp et al., 2019, Grathwohl et al., 2020].

• ...
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